An Approach to Extended Fresnel Scattering for Modeling of Depolarizing Soil-Trunk Double-Bounce Scattering
نویسنده
چکیده
Focusing on scattering from natural media, dihedral (double bounce) scattering is often characterized as a soil-trunk double Fresnel reflection, like for instance, in most model-based decompositions. As soils are predominantly rough in agriculture, the classical Rank 1 dihedral scattering component has to be extended to account for soil roughness-induced depolarization. Therefore, an azimuthal Line of Sight (LoS) rotation is applied solely on the soil plane of the double-bounce reflection to generate a depolarized dihedral scattering signal in agriculture. The results of the sensitivity analysis are shown for a distributed target in coherency matrix representation. It reveals that the combination of coherency matrix elements T22XD + T33XD is quasi-independent of the roughness-induced depolarization, while (T22XD − T33XD)/(T22XD + T33XD) is quasi-independent of the dielectric properties of the reflecting media. Therefore, a depolarization-independent retrieval of soil moisture or a direct roughness retrieval from the extended dihedral scattering component might be possible in stalk-dominated agriculture under certain conditions (e.g., the influence of a differential phase stays at a low level: φ < 15◦). The first analyses with L-band airborne-SAR data of DLR’s E-SAR and F-SAR systems in agricultural regions during the AgriSAR, OPAQUE, SARTEO and TERENO project campaigns state the existence and potential of the extended Fresnel scattering mechanism to represent dihedral scattering between a rough (tilled) soil and the stalks of the agricultural plants.
منابع مشابه
New Results in Microwave Remote Sensing of Vegetation
For active and passive remote sensing of vegetation biomass and underlying soil moisture, it is important to have an accurate physical model and an inverse method that relies on as few parameters as possible. In this paper two new modeling results and one new inverse method will be described. The active/passive response of a quasi periodic canopy such as corn will be treated. It will take into ...
متن کاملClassification of Earth Terrain Covers Using the Modified Four- Component Scattering Power Decomposition
Polarimetric classification is one of the most significant applications of polarimetric synthetic aperture radar (PolSAR) in remote sensing. During the last decade, several research tasks revealed the contribution of polarimetric data in soil types and land cover classification. They contributed thus to a better comprehension of the scattering mechanisms and target identification. In this paper...
متن کاملA Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere
The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...
متن کاملPolarimetric Parameters for Growing Stock Volume Estimation Using ALOS PALSAR L-Band Data over Siberian Forests
In order to assess the potentiality of ALOS L-band fully polarimetric radar data for forestry applications, we investigated a four-component decomposition method to characterize the polarization response of Siberian forest. The decomposition powers of surface scattering, double-bounce and volume scattering, derived with and without rotation of coherency matrix, were compared with Growing Stock ...
متن کاملPolarimetric Decomposition Based on General Characterisation of Scattering from Urban Areas and Multiple Component Scattering Model
DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. i ABSTRACT A generalised polarimetric decomposition approach for polarimetric b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016